First: Announcements, Debriefs, Etc.

| This Week's System(s) | This Week's Question(s) |
|-----------------------|-------------------------|
|                       |                         |
|                       |                         |
|                       |                         |
|                       |                         |
|                       |                         |
|                       |                         |

# Where do mathematical models come from?

**Brainstorm:** How can we use the skills we've learned so far to study a system for which a mathematical model does not exist?

Power Laws

We're going to assume that the systems we're studying this week and next week are *power law* functions.

The general form of a power law is

$$y = Cx^n$$

(And if I were you, I'd label what each of those variables mean.)

A note on n: n can be any value: if n = 1, you get a straight line; if n = 2, you get a squared function; if n = 1/2, you get a square root ... etc. So "power law functions" is actually a big umbrella that lots of different types of equations full under — making it a decent starting assumption when looking at raw data for a system you know almost nothing about.

**Sample Problem:** Map each of the following power law models to the general form of a power law — that is, in each equation, identify ...

- What plays the role of *y*?
- What plays the role of x?
- What's the value of C?
- What's the value of n?
- 1. Model for the kinetic energy of a moving object:  $KE = \frac{930}{2} \ {\rm kg} \ {\rm \cdot} v^2$
- 2. Model for the force that can be exerted by an accelerating object:  $F=13~{\rm kg}~{\cdot}a$
- 3. Model for the relationship between a pendulum's period and its length:  $T=\frac{2\pi}{\sqrt{g}}L^{\frac{1}{2}}$  (and remember that  $g=9.81~{
  m m/s^2}$ )

**Q4U:** Looking at those models, what's something that C values have that n values don't have? What might that mean about what C and n each tell us about the system being modeled by a particular power law equation?

# Using Power Laws to Build New Models





Step One: Gathering and taking logs of your data

| The Process                                                |
|------------------------------------------------------------|
| 1                                                          |
| <u>.</u> .                                                 |
| 2                                                          |
| 3                                                          |
| Why it works: Logarithms and exponents go hand in handl    |
| why it works. Logantinns and exponents go nand in hand.    |
| Natural logs (aka $\ln$ )                                  |
| • Logarithms in general: $\log_b(a) = c$                   |
| $- b \rightarrow $                                         |
| – $a$ and $c$ –                                            |
| <ul> <li>The natural logarithm, ln uses base e!</li> </ul> |
| – Euler's constant $e =$                                   |
|                                                            |
|                                                            |
|                                                            |
| $\ln = e = e$                                              |
|                                                            |
|                                                            |



 $\ensuremath{\textbf{Q4U:}}$  Why do we need to take the log of both sides of the equation?

Starting with the general form of a power law,

$$y = Cx^n$$

- $1. \ take the natural log of both sides of the equation.$
- 2. use the relevant logarithm rules to
  - (a) separate C from  $x^n$
  - (b) separate n from x.

(Note that you won't have to use all three log rules!)



Step Two: Use the In-In plot to find  $\boldsymbol{n}$ 

## The Process

| 1. |  |
|----|--|
| 2. |  |
| 3. |  |

Why it works: We can use our growing understanding of the system to make informed choices.

| What do models tell us? | What do data tell us? |
|-------------------------|-----------------------|
|                         |                       |
|                         |                       |
|                         |                       |
|                         |                       |
|                         |                       |
|                         |                       |

What this means for us:

**Think-Pair-Share:** Lets say I'm interested in how the saplings of a particular species of tree grow, and I want to look specifically at how the sapling's total mass depends on its width. I measure a bunch of trees' diameters (d) and masses (m), log my data, graph them and do LINEST, and get the following results.

|     | Slope | Y-Int |
|-----|-------|-------|
| BE  | 1.80  | 2.1   |
| SE  | 0.05  | 0.1   |
| AE  | 0.09  | 0.2   |
| Min | 1.71  | 1.9   |
| Max | 1.89  | 2.3   |

I know that in some closely related species of trees, the cross-sectional area determines how much water and nutrients can be transported through the trunk for growth. Area is a 2-dimensional quantity, so I'd expect n = 2. Given my data, what value for n should I choose, and why? Step Three: Use use a y vs.  $x^n$  plot to find C

# The Process 1. 2. 3.

Why it works: This part is just the same linearization process from labs 8 and 9!

# Step Four: Write your mathematical model!

## The Process

Starting with the general form of a power law

$$y = Cx^n$$

| 1 |  |
|---|--|
| 2 |  |
| 3 |  |

### WE DID IT! WE HAVE A MODEL!